fsn(yi, vi, sei, data, type="Rosenthal", alpha=.05, target, subset, digits=4)
"Rosenthal"
, "Orwin"
, or "Rosenberg"
. See below for more details."fsn"
. The object is a list containing the following components:NA
for the Orwin method.NA
for the Rosenthal method.NA
for the Rosenthal and Rosenberg methods.print.fsn
function.yi
argument and the corresponding sampling variances via the vi
argument (instead of specifying vi
, one can specify the standard errors (the square root of the sampling variances) via the sei
argument). The escalc
function can be used to compute a wide variety of effect size and outcome measures (and the corresponding sampling variances) based on summary statistics.
The Rosenthal method (sometimes called a ranktest
, regtest
, trimfill
### load BCG vaccine data
data(dat.bcg)
### calculate log relative risks and corresponding sampling variances
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
fsn(yi, vi, data=dat)
fsn(yi, vi, data=dat, type="Orwin")
fsn(yi, vi, data=dat, type="Rosenberg")
Run the code above in your browser using DataLab