transf.rtoz(xi, ...)
transf.ztor(xi, ...)
transf.logit(xi, ...)
transf.ilogit(xi, ...)
transf.arcsin(xi, ...)
transf.iarcsin(xi, ...)
transf.pft(xi, ni, ...)
transf.ipft(xi, ni, ...)
transf.ipft.hm(xi, targs, ...)
transf.isqrt(xi, ...)
transf.irft(xi, ti, ...)
transf.iirft(xi, ti, ...)
transf.ahw(xi, ...)
transf.iahw(xi, ...)
transf.abt(xi, ...)
transf.iabt(xi, ...)
transf.ztor.int(xi, targs, ...)
transf.exp.int(xi, targs, ...)
transf.ilogit.int(xi, targs, ...)
transf.rtoz
: Fisher's r-to-z transformation for correlations.
transf.ztor
: inverse of the Fisher's r-to-z transformation.
transf.logit
: logit (log odds) transformation for proportions.
transf.ilogit
: inverse of the logit transformation.
transf.arcsin
: arcsine square-root transformation for proportions.
transf.iarcsin
: inverse of the arcsine transformation.
transf.pft
: Freeman-Tukey (double arcsine) transformation for proportions. See Freeman & Tukey (1950). The xi
argument is used to specify the proportions and the ni
argument the corresponding sample sizes.
transf.ipft
: inverse of the Freeman-Tukey (double arcsine) transformation for proportions. See Miller (1978).
transf.ipft.hm
: inverse of the Freeman-Tukey (double arcsine) transformation for proportions using the harmonic mean of the sample sizes for the back-transformation. See Miller (1978). The sample sizes are specified via the targs
argument (the list element should be called ni
).
transf.isqrt
: inverse of the square-root transformation (i.e., function to square a number).
transf.irft
: Freeman-Tukey transformation for incidence rates. See Freeman & Tukey (1950). The xi
argument is used to specify the incidence rates and the ti
argument the corresponding person-times at risk.
transf.iirft
: inverse of the Freeman-Tukey transformation for incidence rates.
transf.ahw
: Transformation of coefficient alpha as suggested by Hakstian & Whalen (1976).
transf.iahw
: Inverse of the transformation of coefficient alpha as suggested by Hakstian & Whalen (1976).
transf.abt
: Transformation of coefficient alpha as suggested by Bonett (2002).
transf.iabt
: Inverse of the transformation of coefficient alpha as suggested by Bonett (2002).
transf.ztor.int
: integral transformation method for the z-to-r transformation.
transf.exp.int
: integral transformation method for the exponential transformation.
transf.ilogit.int
: integral transformation method for the inverse of the logit transformation.
The integral transformation method for a transformation function $h(z)$ integrates $h(z) f(z)$ over $z$ using the limits targs$lower
and targs$upper
, where $f(z)$ is the density of a normal distribution with mean equal to xi
and variance equal to targs$tau2
. An example is provided below.
Fisher, R. A. (1921). On the probable error of a coefficient of correlation deduced from a small sample. Metron, 1, 1--32.
Freeman, M. F., & Tukey, J. W. (1950). Transformations related to the angular and the square root. Annals of Mathematical Statistics, 21, 607--611.
Hakstian, A. R., & Whalen, T. E. (1976). A k-sample significance test for independent alpha coefficients. Psychometrika, 41, 219--231.
Miller, J. J. (1978). The inverse of the Freeman-Tukey double arcsine transformation. American Statistician, 32, 138.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1--48. http://www.jstatsoft.org/v36/i03/.
### load BCG vaccine data
data(dat.bcg)
### meta-analysis of the log relative risks using a random-effects model
res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
### average relative risk with 95% CI
predict(res, transf=exp)
### average relative risk with 95% CI using the integral transformation
predict(res, transf=transf.exp.int, targs=list(tau2=res$tau2, lower=-4, upper=4))
Run the code above in your browser using DataLab