
The function provides (cluster) robust tests and confidence intervals of the model coefficients for objects of class "rma"
.
robust(x, cluster, …)# S3 method for rma.uni
robust(x, cluster, adjust=TRUE, digits, …)
# S3 method for rma.mv
robust(x, cluster, adjust=TRUE, digits, …)
an object of class "rma.uni"
or "rma.mv"
.
a vector specifying a clustering variable to use for constructing the sandwich estimator of the variance-covariance matrix.
logical indicating whether a small-sample correction should be applied to the variance-covariance matrix.
integer specifying the number of decimal places to which the printed results should be rounded (if unspecified, the default is to take the value from the object).
other arguments.
An object of class "robust.rma"
. The object is a list containing the following components:
estimated coefficients of the model.
robust standard errors of the coefficients.
test statistics of the coefficients.
p-values for the test statistics.
lower bound of the confidence intervals for the coefficients.
upper bound of the confidence intervals for the coefficients.
robust variance-covariance matrix of the estimated coefficients.
test statistic for the omnibus test of coefficients.
p-value for the omnibus test of coefficients.
some additional elements/values.
The results are formatted and printed with the print.robust.rma function.
The function constructs a (cluster) robust estimate of the variance-covariance matrix of the model coefficients based on a sandwich-type estimator and then computes tests and confidence intervals of the model coefficients.
Tests of individual coefficients and confidence intervals are based on a t-distribution with
When adjust=TRUE
(the default), the (cluster) robust estimate of the variance-covariance matrix is multiplied by the factor
Cameron, A. C., & Miller, D. L. (2015). A practitioner's guide to cluster-robust inference. Journal of Human Resources, 50, 317--372.
Eicker, F. (1967). Limit theorems for regressions with unequal and dependent errors. In L. M. LeCam & J. Neyman (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (pp. 59--82). Berkeley: University of California Press.
Froot, K. A. (1989). Consistent covariance matrix estimation with cross-sectional dependence and heteroskedasticity in financial data. Journal of Financial and Quantitative Analysis, 24, 333--355.
Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1, 39--65.
Huber, P. (1967). The behavior of maximum-likelihood estimates under nonstandard conditions. In L. M. LeCam & J. Neyman (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (pp. 221--233). Berkeley: University of California Press.
MacKinnon, J. G., & White, H. (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29, 305--325.
Sidik, K., & Jonkman, J. N. (2005). A note on variance estimation in random effects meta-regression. Journal of Biopharmaceutical Statistics, 15, 823--838.
Sidik, K., & Jonkman, J. N. (2006). Robust variance estimation for random effects meta-analysis. Computational Statistics & Data Analysis, 50, 3681--3701.
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48, 817--838.
Williams, R. L. (2000). A note on robust variance estimation for cluster-correlated data. Biometrics, 56, 645--646.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1--48. https://www.jstatsoft.org/v036/i03.
# NOT RUN {
### copy data from Konstantopoulos (2011) into 'dat'
dat <- dat.konstantopoulos2011
### multilevel random-effects model
res <- rma.mv(yi, vi, random = ~ 1 | district/school, data=dat)
res
### results based on sandwich method
robust(res, cluster=dat$district)
### copy data from Berkey et al. (1998) into 'dat'
dat <- dat.berkey1998
### construct list of the variance-covariance matrices of the observed outcomes for the studies
V <- lapply(split(dat[c("v1i", "v2i")], dat$trial), as.matrix)
### construct block diagonal matrix
V <- bldiag(V)
### fit multivariate model
res <- rma.mv(yi, V, mods = ~ outcome - 1, random = ~ outcome | trial, struct="UN", data=dat)
res
### results based on sandwich method
robust(res, cluster=dat$trial)
# }
Run the code above in your browser using DataLab