# NOT RUN {
### copy data into 'dat' and examine data
dat <- dat.pritz1997
dat
### computation of "weighted average" in Zhou et al. (1999), Table IV
dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat, add=0)
theta.hat <- sum(dat$ni * dat$yi) / sum(dat$ni)
se.theta.hat <- sqrt(sum(dat$ni^2 * dat$vi) / sum(dat$ni)^2)
ci.lb <- theta.hat - 1.96 * se.theta.hat
ci.ub <- theta.hat + 1.96 * se.theta.hat
round(c(estimate = theta.hat, se = se.theta.hat, ci.lb = ci.lb, ci.ub = ci.ub), 4)
### this is identical to a FE model with sample size weights
rma(yi, vi, weights=ni, method="FE", data=dat)
### random-effects model with raw proportions
dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat)
res <- rma(yi, vi, data=dat)
predict(res)
### random-effects model with logit transformed proportions
dat <- escalc(measure="PLO", xi=xi, ni=ni, data=dat)
res <- rma(yi, vi, data=dat)
predict(res, transf=transf.ilogit)
### mixed-effects logistic regression model
res <- rma.glmm(measure="PLO", xi=xi, ni=ni, data=dat)
predict(res, transf=transf.ilogit)
# }
Run the code above in your browser using DataLab