Learn R Programming

metagenomeSeq (version 1.14.0)

fitFeatureModel: Computes differential abundance analysis using a zero-inflated log-normal model

Description

Wrapper to actually run zero-inflated log-normal model given a MRexperiment object and model matrix. User can decide to shrink parameter estimates.

Usage

fitFeatureModel(obj, mod, coef = 2, B = 1, szero = FALSE, spos = TRUE)

Arguments

obj
A MRexperiment object with count data.
mod
The model for the count distribution.
coef
Coefficient of interest to grab log fold-changes.
B
Number of bootstraps to perform if >1. If >1 performs permutation test.
szero
TRUE/FALSE, shrink zero component parameters.
spos
TRUE/FALSE, shrink positive component parameters.

Value

A list of objects including:
  • call - the call made to fitFeatureModel
  • fitZeroLogNormal - list of parameter estimates for the zero-inflated log normal model
  • design - model matrix
  • taxa - taxa names
  • counts - count matrix
  • pvalues - calculated p-values
  • permuttedfits - permutted z-score estimates under the null

See Also

cumNorm

Examples

Run this code

data(lungData)
lungData = lungData[,-which(is.na(pData(lungData)$SmokingStatus))]
lungData=filterData(lungData,present=30,depth=1)
lungData <- cumNorm(lungData, p=.5)
s <- normFactors(lungData)
pd <- pData(lungData)
mod <- model.matrix(~1+SmokingStatus, data=pd)
lungres1 = fitFeatureModel(lungData,mod)

Run the code above in your browser using DataLab