Learn R Programming

metamisc (version 0.1.9)

plot.valmeta: Forest Plots

Description

Function to create forest plots for objects of class "valmeta".

Usage

# S3 method for valmeta
plot(x, sort = "asc", ...)

Arguments

x

An object of class "valmeta"

sort

By default, studies are ordered by ascending effect size (sort="asc"). For study ordering by descending effect size, choose sort="desc". For any other value, study ordering is ignored.

Additional arguments which are passed to forest.

Value

An object of class ggplot

Details

The forest plot shows the performance estimates of each validation with corresponding confidence intervals. A polygon is added to the bottom of the forest plot, showing the summary estimate based on the model. A 95% prediction interval is added by default for random-effects models, the dotted line indicates its (approximate) bounds.

References

  • Debray TPA, Damen JAAG, Snell KIE, Ensor J, Hooft L, Reitsma JB, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.

  • Lewis S, Clarke M. Forest plots: trying to see the wood and the trees. BMJ. 2001; 322(7300):1479--80.

  • Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011 342:d549--d549.

Examples

Run this code
# NOT RUN {
data(EuroSCORE)
fit <- with(EuroSCORE, valmeta(cstat=c.index, cstat.se=se.c.index, 
            cstat.95CI=cbind(c.index.95CIl,c.index.95CIu), N=n, O=n.events))
plot(fit)

library(ggplot2)
plot(fit, theme=theme_grey())

# }

Run the code above in your browser using DataLab