data(DVTipd)
if (FALSE) {
# Explore heterogeneity in intercept and assocation of 'ddimdich'
glmer(dvt ~ 0 + cluster + (ddimdich|study), family = binomial(), data = DVTipd)
}
# Scope
f <- dvt ~ histdvt + ddimdich + sex + notraum
# Internal-external cross-validation of a pre-specified model 'f'
fit <- metapred(DVTipd, strata = "study", formula = f, scope = f, family = binomial)
fit
# Let's try to simplify model 'f' in order to improve its external validity
metapred(DVTipd, strata = "study", formula = f, family = binomial)
# We can also try to build a generalizable model from scratch
if (FALSE) {
# Some additional examples:
metapred(DVTipd, strata = "study", formula = dvt ~ 1, scope = f, family = binomial) # Forwards
metapred(DVTipd, strata = "study", formula = f, scope = f, family = binomial) # no selection
metapred(DVTipd, strata = "study", formula = f, max.steps = 0, family = binomial) # no selection
metapred(DVTipd, strata = "study", formula = f, recal.int = TRUE, family = binomial)
metapred(DVTipd, strata = "study", formula = f, meta.method = "REML", family = binomial)
}
# By default, metapred assumes the first column is the outcome.
newdat <- data.frame(dvt=0, histdvt=0, ddimdich=0, sex=1, notraum=0)
fitted <- predict(fit, newdata = newdat)
Run the code above in your browser using DataLab