an object of class numeric within a list (if tidy = FALSE) or within a
data frame (if tidy = TRUE).
Arguments
data
(Optional) argument to call an existing data frame containing the data.
obs
Vector with observed values (numeric).
pred
Vector with predicted values (numeric).
tidy
Logical operator (TRUE/FALSE) to decide the type of return. TRUE
returns a data.frame, FALSE returns a list; Default : FALSE.
na.rm
Logic argument to remove rows with missing values
(NA). Default is na.rm = TRUE.
Details
The LCS represents the random component of the prediction error following
Kobayashi & Salam (2000). The lower the value the less contribution to the MSE.
However, it needs to be compared to MSE as its benchmark.
For the formula and more details, see online-documentation
References
Kobayashi & Salam (2000).
Comparing simulated and measured values using mean squared deviation and its components.
Agron. J. 92, 345–352. tools:::Rd_expr_doi("10.2134/agronj2000.922345x")