It estimates the MLP, the unsystematic error component to
the Mean Squared Error (MSE), for a continuous predicted-observed dataset
following Correndo et al. (2021).
an object of class numeric within a list (if tidy = FALSE) or within a
data frame (if tidy = TRUE).
Arguments
data
(Optional) argument to call an existing data frame containing the data.
obs
Vector with observed values (numeric).
pred
Vector with predicted values (numeric).
tidy
Logical operator (TRUE/FALSE) to decide the type of return. TRUE
returns a data.frame, FALSE returns a list; Default : FALSE.
na.rm
Logic argument to remove rows with missing values
(NA). Default is na.rm = TRUE.
Details
The MLP represents the unsystematic (random) component of the MSE.
It is obtained via a symmetric decomposition of the MSE (invariant to
predicted-observed orientation) using a symmetric regression line.
The MLP is equal to the sum of unsystematic differences divided by the sample size (n).
The greater the value the greater the random noise of the predictions.
For the formula and more details, see online-documentation
References
Correndo et al. (2021).
Revisiting linear regression to test agreement in continuous predicted-observed datasets.
Agric. Syst. 192, 103194. tools:::Rd_expr_doi("10.1016/j.agsy.2021.103194")