It estimates the PLP, the contribution of the unsystematic error to
the Mean Squared Error (MSE) for a continuous predicted-observed dataset
following Correndo et al. (2021).
an object of class numeric within a list (if tidy = FALSE) or within a
data frame (if tidy = TRUE).
Arguments
data
(Optional) argument to call an existing data frame containing the data.
obs
Vector with observed values (numeric).
pred
Vector with predicted values (numeric).
tidy
Logical operator (TRUE/FALSE) to decide the type of return. TRUE
returns a data.frame, FALSE returns a list; Default : FALSE.
na.rm
Logic argument to remove rows with missing values
(NA). Default is na.rm = TRUE.
Details
The PLP (%, 0-100) represents the contribution of the Mean Lack of Precision (MLP),
the unsystematic (random) component of the MSE. It is obtained via a symmetric decomposition
of the MSE (invariant to predicted-observed orientation).
The greater the value the greater the contribution of unsystematic error to the MSE.
For the formula and more details, see online-documentation
References
Correndo et al. (2021).
Revisiting linear regression to test agreement in continuous predicted-observed datasets.
Agric. Syst. 192, 103194. tools:::Rd_expr_doi("10.1016/j.agsy.2021.103194")