Learn R Programming

metrica (version 2.1.0)

RMAE: Relative Mean Absolute Error (RMAE)

Description

It estimates the RMAE for a continuous predicted-observed dataset.

Usage

RMAE(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)

Value

an object of class numeric within a list (if tidy = FALSE) or within a data frame (if tidy = TRUE).

Arguments

data

(Optional) argument to call an existing data frame containing the data.

obs

Vector with observed values (numeric).

pred

Vector with predicted values (numeric).

tidy

Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE.

na.rm

Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE.

Details

The RMAE normalizes the Mean Absolute Error (MAE) by the mean of observations. The closer to zero the lower the prediction error. For the formula and more details, see online-documentation

Examples

Run this code
# \donttest{
set.seed(1)
X <- rnorm(n = 100, mean = 0, sd = 10)
Y <- X + rnorm(n=100, mean = 0, sd = 3)
RMAE(obs = X, pred = Y)
# }

Run the code above in your browser using DataLab