an object of class numeric within a list (if tidy = FALSE) or within a
data frame (if tidy = TRUE).
Arguments
data
(Optional) argument to call an existing data frame containing the data.
obs
Vector with observed values (numeric).
pred
Vector with predicted values (numeric).
tidy
Logical operator (TRUE/FALSE) to decide the type of return. TRUE
returns a data.frame, FALSE returns a list; Default : FALSE.
na.rm
Logic argument to remove rows with missing values
(NA). Default is na.rm = TRUE.
Details
The RSR normalizes the Root Mean Squared Error (RMSE) using the standard
deviation of observed values. It goes from an optimal value of 0 to infinity.
Based on RSR, Moriasi et al. (2007) indicates performance ratings as:
i) very-good (0-0.50), ii) good (0.50-0.60), iii) satisfactory (0.60-0.70), or
iv) unsatisfactory (>0.70).
For the formula and more details, see online-documentation
References
Moriasi et al. (2007).
Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations.
Trans. ASABE 50, 885–900. tools:::Rd_expr_doi("10.13031/2013.23153")