powered by
It creates a scatter plot of the difference between observed and predicted values (obs-pred) vs. observed values.
bland_altman_plot( data = NULL, obs, pred, shape_type = NULL, shape_size = NULL, shape_color = NULL, shape_fill = NULL, zeroline_type = NULL, zeroline_size = NULL, zeroline_color = NULL, limitsline_type = NULL, limitsline_size = NULL, limitsline_color = NULL, na.rm = TRUE )
an object of class ggplot.
ggplot
(Optional) argument to call an existing data frame containing the data.
Vector with observed values (numeric).
Vector with predicted values (numeric).
number indicating the shape type for the data points.
number indicating the shape size for the data points.
string indicating the shape color for the data points.
string indicating the shape fill for the data points.
string or integer indicating the zero line-type.
number indicating the zero line size.
string indicating the zero line color.
string or integer indicating the limits (+/- 1.96*SD) line-type.
number indicating the limits (+/- 1.96*SD) line size.
string indicating the limits (+/- 1.96*SD) line color.
Logic argument to remove rows with missing values
For more details, see online-documentation
Bland & Altman (1986). Statistical methods for assessing agreement between two methods of clinical measurement The Lancet 327(8476), 307-310 tools:::Rd_expr_doi("10.1016/S0140-6736(86)90837-8")
ggplot,geom_point,aes
geom_point
aes
# \donttest{ X <- rnorm(n = 100, mean = 0, sd = 10) Y <- rnorm(n = 100, mean = 0, sd = 10) bland_altman_plot(obs = X, pred = Y) # }
Run the code above in your browser using DataLab