Learn R Programming

mets (version 1.2.3.1)

EVaddGam: Relative risk for additive gamma model

Description

Computes the relative risk for additive gamma model at time 0

Usage

EVaddGam(theta, x1, x2, thetades, ags)

Arguments

theta

theta

x1

x1

x2

x2

thetades

thetades

ags

ags

References

Eriksson and Scheike (2015), Additive Gamma frailty models for competing risks data, Biometrics (2015)

Examples

Run this code
# NOT RUN {
lam0 <- c(0.5,0.3)
pars <- c(1,1,1,1,0,1)
## genetic random effects, cause1, cause2 and overall 
parg <- pars[c(1,3,5)]
## environmental random effects, cause1, cause2 and overall 
parc <- pars[c(2,4,6)]

## simulate competing risks with two causes with hazards 0.5 and 0.3
## ace for each cause, and overall ace 
out <- simCompete.twin.ace(10000,parg,parc,0,2,lam0=lam0,overall=1,all.sum=1)

## setting up design for running the model 
mm <- familycluster.index(out$cluster)
head(mm$familypairindex,n=10)
pairs <- matrix(mm$familypairindex,ncol=2,byrow=TRUE)
tail(pairs,n=12)
#
kinship <- (out[pairs[,1],"zyg"]=="MZ")+ (out[pairs[,1],"zyg"]=="DZ")*0.5

# dout <- make.pairwise.design.competing(pairs,kinship,
#          type="ace",compete=length(lam0),overall=1)
# head(dout$ant.rvs)
## MZ
# dim(dout$theta.des)
# dout$random.design[,,1]
## DZ
# dout$theta.des[,,nrow(pairs)]
# dout$random.design[,,nrow(pairs)]
#
# thetades <- dout$theta.des[,,1]
# x <- dout$random.design[,,1]
# x
##EVaddGam(rep(1,6),x[1,],x[3,],thetades,matrix(1,18,6))

# thetades <- dout$theta.des[,,nrow(out)/2]
# x <- dout$random.design[,,nrow(out)/2]
##EVaddGam(rep(1,6),x[1,],x[4,],thetades,matrix(1,18,6))
# }

Run the code above in your browser using DataLab