# NOT RUN {
## Reduce Ex.Timings
library("timereg")
data("prt",package="mets");
prt <- prt[which(prt$id %in% sample(unique(prt$id),7500)),]
### marginal cumulative incidence of prostate cancer
times <- seq(60,100,by=2)
outm <- comp.risk(Event(time,status)~+1,data=prt,cause=2,times=times)
cifmz <- predict(outm,X=1,uniform=0,resample.iid=1)
cifdz <- predict(outm,X=1,uniform=0,resample.iid=1)
### concordance for MZ and DZ twins
cc <- bicomprisk(Event(time,status)~strata(zyg)+id(id),
data=prt,cause=c(2,2))
cdz <- cc$model$"DZ"
cmz <- cc$model$"MZ"
### To compute casewise cluster argument must be passed on,
### here with a max of 100 to limit comp-time
outm <-comp.risk(Event(time,status)~+1,data=prt,
cause=2,times=times,max.clust=100)
cifmz <-predict(outm,X=1,uniform=0,resample.iid=1)
cc <-bicomprisk(Event(time,status)~strata(zyg)+id(id),data=prt,
cause=c(2,2),se.clusters=outm$clusters)
cdz <- cc$model$"DZ"
cmz <- cc$model$"MZ"
cdz <- casewise.test(cdz,cifmz,test="case") ## test based on casewise
cmz <- casewise.test(cmz,cifmz,test="conc") ## based on concordance
plot(cmz,ylim=c(0,0.7),xlim=c(60,100))
par(new=TRUE)
plot(cdz,ylim=c(0,0.7),xlim=c(60,100))
slope.process(cdz$casewise[,1],cdz$casewise[,2],iid=cdz$casewise.iid)
slope.process(cmz$casewise[,1],cmz$casewise[,2],iid=cmz$casewise.iid)
# }
Run the code above in your browser using DataLab