# NOT RUN {
data(iris)
data=iris
drename(iris) <- ~.
names(iris)
iris$time <- runif(nrow(iris))
iris$time1 <- runif(nrow(iris))
iris$status <- rbinom(nrow(iris),1,0.5)
iris$S1 <- with(iris,Surv(time,status))
iris$S2 <- with(iris,Surv(time1,status))
iris$id <- 1:nrow(iris)
mm <- dreg(iris,"*.length"~"*.width"|I(species=="setosa" & status==1))
mm <- dreg(iris,"*.length"~"*.width"|species+status)
mm <- dreg(iris,"*.length"~"*.width"|species)
mm <- dreg(iris,"*.length"~"*.width"|species+status,z.arg="group")
# }
# NOT RUN {
## Reduce Ex.Timings
y <- "S*"~"*.width"
xs <- dreg(iris,y,fun.=phreg)
xs <- dreg(iris,y,fun.=survdiff)
### testing forskellige calls
y <- "S*"~"*.width"
xs <- dreg(iris,y,x.oneatatime=FALSE,fun.=phreg)
## under condition
y <- S1~"*.width"|I(species=="setosa" & sepal.width>3)
xs <- dreg(iris,y,z.arg="condition",fun.=phreg)
xs <- dreg(iris,y,fun.=phreg)
## under condition
y <- S1~"*.width"|species=="setosa"
xs <- dreg(iris,y,z.arg="condition",fun.=phreg)
xs <- dreg(iris,y,fun.=phreg)
## with baseline after |
y <- S1~"*.width"|sepal.length
xs <- dreg(iris,y,fun.=phreg)
## by group by species, not working
y <- S1~"*.width"|species
ss <- split(iris,paste(iris$species,iris$status))
xs <- dreg(iris,y,fun.=phreg)
## species as base, species is factor so assumes that this is grouping
y <- S1~"*.width"|species
xs <- dreg(iris,y,z.arg="base",fun.=phreg)
## background var after | and then one of x's at at time
y <- S1~"*.width"|status+"sepal*"
xs <- dreg(iris,y,fun.=phreg)
## background var after | and then one of x's at at time
y <- S1~"*.width"|status+"sepal*"
xs <- dreg(iris,y,x.oneatatime=FALSE,fun.=phreg)
xs <- dreg(iris,y,fun.=phreg)
## background var after | and then one of x's at at time
y <- S1~"*.width"+factor(species)
xs <- dreg(iris,y,fun.=phreg)
xs <- dreg(iris,y,fun.=phreg,x.oneatatime=FALSE)
y <- S1~"*.width"|factor(species)
xs <- dreg(iris,y,z.arg="base",fun.=phreg)
y <- S1~"*.width"|cluster(id)+factor(species)
xs <- dreg(iris,y,z.arg="base",fun.=phreg)
xs <- dreg(iris,y,z.arg="base",fun.=coxph)
## under condition with groups
y <- S1~"*.width"|I(sepal.length>4)
xs <- dreg(subset(iris,species=="setosa"),y,z.arg="group",fun.=phreg)
## under condition with groups
y <- S1~"*.width"+I(log(sepal.length))|I(sepal.length>4)
xs <- dreg(subset(iris,species=="setosa"),y,z.arg="group",fun.=phreg)
y <- S1~"*.width"+I(dcut(sepal.length))|I(sepal.length>4)
xs <- dreg(subset(iris,species=="setosa"),y,z.arg="group",fun.=phreg)
ff <- function(formula,data,...) {
ss <- survfit(formula,data,...)
kmplot(ss,...)
return(ss)
}
dcut(iris) <- ~"*.width"
y <- S1~"*.4"|I(sepal.length>4)
par(mfrow=c(1,2))
xs <- dreg(iris,y,fun.=ff)
# }
Run the code above in your browser using DataLab