set.seed(1)
d <- subset(simClaytonOakes(500,4,2,1,stoptime=2,left=2),truncated)
e <- ClaytonOakes(survival::Surv(lefttime,time,status)~x+cluster(~1,cluster),
cuts=c(0,0.5,1,2),data=d)
e
d2 <- simClaytonOakes(500,4,2,1,stoptime=2,left=0)
d2$z <- rep(1,nrow(d2)); d2$z[d2$cluster%in%sample(d2$cluster,100)] <- 0
## Marginal=Cox Proportional Hazards model:
ts <- ClaytonOakes(survival::Surv(time,status)~timereg::prop(x)+cluster(~1,cluster),
data=d2,type="two.stage")
## Marginal=Aalens additive model:
ts2 <- ClaytonOakes(survival::Surv(time,status)~x+cluster(~1,cluster),
data=d2,type="two.stage")
## Marginal=Piecewise constant:
e2 <- ClaytonOakes(survival::Surv(time,status)~x+cluster(~-1+factor(z),cluster),
cuts=c(0,0.5,1,2),data=d2)
e2
e0 <- ClaytonOakes(survival::Surv(time,status)~cluster(~-1+factor(z),cluster),
cuts=c(0,0.5,1,2),data=d2)
ts0 <- ClaytonOakes(survival::Surv(time,status)~cluster(~1,cluster),
data=d2,type="two.stage")
plot(ts0)
plot(e0,add=TRUE)
e3 <- ClaytonOakes(survival::Surv(time,status)~x+cluster(~1,cluster),cuts=c(0,0.5,1,2),
data=d,var.invlink=identity)
e3
Run the code above in your browser using DataLab