Learn R Programming

mets (version 1.3.4)

FG_AugmentCifstrata: Augmentation for Fine-Gray model based on stratified NPMLE Cif (Aalen-Johansen)

Description

Computes the augmentation term for each individual as well as the sum $$ A(\beta) = \int H(t,X,\beta) \frac{F_2^*(t,s)}{S^*(t,s)} \frac{1}{G_c(t)} dM_c $$ with $$ H(t,X,\beta) = \int_t^\infty (X - E(\beta,t) ) G_c(t) d\Lambda_1^*i(t,s) $$ using a KM for $$G_c(t)$$ and a working model for cumulative baseline related to $$F_1^*(t,s)$$ and $$s$$ is strata, $$S^*(t,s) = 1 - F_1^*(t,s) - F_2^*(t,s)$$, and $$E(\beta^p,t)$$ is given. Assumes that no strata for baseline of ine-Gay model that is augmented.

Usage

FG_AugmentCifstrata(
  formula,
  data = data,
  E = NULL,
  cause = NULL,
  cens.code = 0,
  km = TRUE,
  case.weights = NULL,
  weights = NULL,
  offset = NULL,
  ...
)

Arguments

formula

formula with 'Event', strata model for CIF given by strata, and strataC specifies censoring strata

data

data frame

E

from FG-model

cause

of interest

cens.code

code of censoring

km

to use Kaplan-Meier

case.weights

weights for FG score equations (that follow dN_1)

weights

weights for FG score equations

offset

offsets for FG model

...

Additional arguments to lower level funtions

Author

Thomas Scheike

Details

After a couple of iterations we end up with a solution of $$ \int (X - E(\beta) ) Y_1(t) w(t) dM_1 + A(\beta) $$ the augmented FG-score.

Standard errors computed under assumption of correct $$G_c$$ model.

Examples

Run this code
set.seed(100)
rho1 <- 0.2; rho2 <- 10
n <- 400
beta=c(0.0,-0.1,-0.5,0.3)
dats <- simul.cifs(n,rho1,rho2,beta,rc=0.2)
dtable(dats,~status)
dsort(dats) <- ~time
fg <- cifreg(Event(time,status)~Z1+Z2,data=dats,cause=1,propodds=NULL)
summary(fg)

fgaugS <- FG_AugmentCifstrata(Event(time,status)~Z1+Z2+strata(Z1,Z2),data=dats,cause=1,E=fg$E)
summary(fgaugS)
fgaugS2 <- FG_AugmentCifstrata(Event(time,status)~Z1+Z2+strata(Z1,Z2),data=dats,cause=1,E=fgaugS$E)
summary(fgaugS2)

Run the code above in your browser using DataLab