data(twinstut)
twinstut0 <- subset(twinstut, tvparnr<4000)
twinstut <- twinstut0
twinstut$binstut <- (twinstut$stutter=="yes")*1
theta.des <- model.matrix( ~-1+factor(zyg),data=twinstut)
margbin <- glm(binstut~factor(sex)+age,data=twinstut,family=binomial())
bin <- binomial.twostage(margbin,data=twinstut,var.link=1,
clusters=twinstut$tvparnr,theta.des=theta.des,detail=0)
summary(bin)
twinstut$cage <- scale(twinstut$age)
theta.des <- model.matrix( ~-1+factor(zyg)+cage,data=twinstut)
bina <- binomial.twostage(margbin,data=twinstut,var.link=1,
clusters=twinstut$tvparnr,theta.des=theta.des)
summary(bina)
theta.des <- model.matrix( ~-1+factor(zyg)+factor(zyg)*cage,data=twinstut)
bina <- binomial.twostage(margbin,data=twinstut,var.link=1,
clusters=twinstut$tvparnr,theta.des=theta.des)
summary(bina)
## Reduce Ex.Timings
## refers to zygosity of first subject in eash pair : zyg1
## could also use zyg2 (since zyg2=zyg1 within twinpair's))
out <- easy.binomial.twostage(stutter~factor(sex)+age,data=twinstut,
response="binstut",id="tvparnr",var.link=1,
theta.formula=~-1+factor(zyg1))
summary(out)
## refers to zygosity of first subject in eash pair : zyg1
## could also use zyg2 (since zyg2=zyg1 within twinpair's))
desfs<-function(x,num1="zyg1",num2="zyg2")
c(x[num1]=="dz",x[num1]=="mz",x[num1]=="os")*1
out3 <- easy.binomial.twostage(binstut~factor(sex)+age,
data=twinstut,response="binstut",id="tvparnr",var.link=1,
theta.formula=desfs,desnames=c("mz","dz","os"))
summary(out3)
### use of clayton oakes binomial additive gamma model
###########################################################
## Reduce Ex.Timings
data <- simbinClaytonOakes.family.ace(10000,2,1,beta=NULL,alpha=NULL)
margbin <- glm(ybin~x,data=data,family=binomial())
margbin
head(data)
data$number <- c(1,2,3,4)
data$child <- 1*(data$number==3)
### make ace random effects design
out <- ace.family.design(data,member="type",id="cluster")
out$pardes
head(out$des.rv)
bints <- binomial.twostage(margbin,data=data,
clusters=data$cluster,detail=0,var.par=1,
theta=c(2,1),var.link=0,
random.design=out$des.rv,theta.des=out$pardes)
summary(bints)
data <- simbinClaytonOakes.twin.ace(10000,2,1,beta=NULL,alpha=NULL)
out <- twin.polygen.design(data,id="cluster",zygname="zygosity")
out$pardes
head(out$des.rv)
margbin <- glm(ybin~x,data=data,family=binomial())
bintwin <- binomial.twostage(margbin,data=data,
clusters=data$cluster,var.par=1,
theta=c(2,1),random.design=out$des.rv,theta.des=out$pardes)
summary(bintwin)
concordanceTwinACE(bintwin)
Run the code above in your browser using DataLab