Learn R Programming

mets (version 1.3.4)

casewise: Estimates the casewise concordance based on Concordance and marginal estimate using prodlim but no testing

Description

.. content for description (no empty lines) ..

Usage

casewise(conc, marg, cause.marg)

Arguments

conc

Concordance

marg

Marginal estimate

cause.marg

specififes which cause that should be used for marginal cif based on prodlim

Author

Thomas Scheike

Examples

Run this code
 ## Reduce Ex.Timings
library(prodlim)
data(prt);
prt <- force.same.cens(prt,cause="status")

### marginal cumulative incidence of prostate cancer##' 
outm <- prodlim(Hist(time,status)~+1,data=prt)

times <- 60:100
cifmz <- predict(outm,cause=2,time=times,newdata=data.frame(zyg="MZ")) ## cause is 2 (second cause) 
cifdz <- predict(outm,cause=2,time=times,newdata=data.frame(zyg="DZ"))

### concordance for MZ and DZ twins
cc <- bicomprisk(Event(time,status)~strata(zyg)+id(id),data=prt,cause=c(2,2),prodlim=TRUE)
cdz <- cc$model$"DZ"
cmz <- cc$model$"MZ"

cdz <- casewise(cdz,outm,cause.marg=2) 
cmz <- casewise(cmz,outm,cause.marg=2)

plot(cmz,ci=NULL,ylim=c(0,0.5),xlim=c(60,100),legend=TRUE,col=c(3,2,1))
par(new=TRUE)
plot(cdz,ci=NULL,ylim=c(0,0.5),xlim=c(60,100),legend=TRUE)
summary(cdz)
summary(cmz)

Run the code above in your browser using DataLab