Learn R Programming

mets (version 1.3.4)

gof.phreg: GOF for Cox PH regression

Description

Cumulative score process residuals for Cox PH regression p-values based on Lin, Wei, Ying resampling.

Usage

# S3 method for phreg
gof(object, n.sim = 1000, silent = 1, robust = NULL, ...)

Arguments

object

is phreg object

n.sim

number of simulations for score processes

silent

to show timing estimate will be produced for longer jobs

robust

to control wether robust dM_i(t) or dN_i are used for simulations

...

Additional arguments to lower level funtions

Author

Thomas Scheike and Klaus K. Holst

Examples

Run this code
library(mets)
data(sTRACE)

m1 <- phreg(Surv(time,status==9)~vf+chf+diabetes,data=sTRACE) 
gg <- gof(m1)
gg
par(mfrow=c(1,3))
plot(gg)

m1 <- phreg(Surv(time,status==9)~strata(vf)+chf+diabetes,data=sTRACE) 
## to get Martingale ~ dN based simulations
gg <- gof(m1)
gg

## to get Martingale robust simulations, specify cluster in  call 
sTRACE$id <- 1:500
m1 <- phreg(Surv(time,status==9)~vf+chf+diabetes+cluster(id),data=sTRACE) 
gg <- gof(m1)
gg

m1 <- phreg(Surv(time,status==9)~strata(vf)+chf+diabetes+cluster(id),data=sTRACE) 
gg <- gof(m1)
gg

Run the code above in your browser using DataLab