Learn R Programming

mets (version 1.3.4)

phreg: Fast Cox PH regression

Description

Fast Cox PH regression Robust variance is default variance with the summary.

Usage

phreg(formula, data, offset = NULL, weights = NULL, ...)

Arguments

formula

formula with 'Surv' outcome (see coxph)

data

data frame

offset

offsets for cox model

weights

weights for Cox score equations

...

Additional arguments to lower level funtions

Author

Klaus K. Holst, Thomas Scheike

Details

influence functions (iid) will follow numerical order of given cluster variable so ordering after $id will give iid in order of data-set.

Examples

Run this code
data(TRACE)
dcut(TRACE) <- ~.
out1 <- phreg(Surv(time,status==9)~vf+chf+strata(wmicat.4),data=TRACE)
out2 <- phreg(Event(time,status)~vf+chf+strata(wmicat.4),data=TRACE)
## tracesim <- timereg::sim.cox(out1,1000)
## sout1 <- phreg(Surv(time,status==1)~vf+chf+strata(wmicat.4),data=tracesim)
## robust standard errors default 
summary(out1)
out1 <- phreg(Surv(time,status!=0)~vf+chf+strata(wmicat.4),data=TRACE)
summary(out2)

par(mfrow=c(1,2))
bplot(out1)
## bplot(sout1,se=TRUE)

## computing robust variance for baseline
rob1 <- robust.phreg(out1)
bplot(rob1,se=TRUE,robust=TRUE)

## making iid decomposition of regression parameters
betaiiid <- lava::iid(out1)

## making iid decomposition of baseline at a specific time-point
Aiiid <- mets:::IIDbaseline.phreg(out1,time=30)

Run the code above in your browser using DataLab