library(mets)
data(hfactioncpx12)
hf <- hfactioncpx12
hf$x <- as.numeric(hf$treatment)
## to fit non-parametric models with just a baseline
xr <- phreg(Surv(entry,time,status==1)~cluster(id),data=hf)
dr <- phreg(Surv(entry,time,status==2)~cluster(id),data=hf)
par(mfrow=c(1,3))
plot(dr,se=TRUE)
title(main="death")
plot(xr,se=TRUE)
### robust standard errors
rxr <- robust.phreg(xr,fixbeta=1)
plot(rxr,se=TRUE,robust=TRUE,add=TRUE,col=4)
## marginal mean of expected number of recurrent events
## out <- recurrentMarginalPhreg(xr,dr)
## summary(out,times=1:5)
## marginal mean using formula
outN <- recurrentMarginal(Event(entry,time,status)~cluster(id),hf,cause=1,death.code=2)
plot(outN,se=TRUE,col=2,add=TRUE)
summary(outN,times=1:5)
########################################################################
### with strata ##################################################
########################################################################
out <- recurrentMarginal(Event(entry,time,status)~strata(treatment)+cluster(id),
data=hf,cause=1,death.code=2)
plot(out,se=TRUE,ylab="marginal mean",col=1:2)
summary(out,times=1:5)
Run the code above in your browser using DataLab