Learn R Programming

mev (version 1.17)

.fit.gpd.rob: Robust threshold selection of Dupuis

Description

The optimal bias-robust estimator (OBRE) for the generalized Pareto. This function returns robust estimates and the associated weights.

Usage

.fit.gpd.rob(dat, thresh, k = 4, tol = 1e-05, show = FALSE)

Value

a list with the same components as fit.gpd, in addition to

  • estimate: optimal bias-robust estimates of the scale and shape parameters.

  • weights: vector of OBRE weights.

Arguments

dat

a numeric vector of data

thresh

threshold parameter

k

bound on the influence function; the constant k is a robustness parameter (higher bounds are more efficient, low bounds are more robust). Default to 4.

tol

numerical tolerance for OBRE weights iterations.

show

logical: should diagnostics and estimates be printed. Default to FALSE.

References

Dupuis, D.J. (1998). Exceedances over High Thresholds: A Guide to Threshold Selection, Extremes, 1(3), 251--261.

See Also

fit.gpd

Examples

Run this code
dat <- rexp(100)
.fit.gpd.rob(dat, 0.1)

Run the code above in your browser using DataLab