if (FALSE) {
set.seed(765)
# Max-stable model, chibar = 1
dat <- rmev(n = 1000, model = "log", d = 2, param = 0.5)
chibar(dat, 'profile', qu = 0.5)
s <- seq(0.05,1, length = 30)
chibar_est <- t(sapply(s, function(keep){chibar(dat, 'delta', qu = keep)}))
matplot(s, chibar_est, type = 'l', col = c(1, 2, 2), lty = c(1, 2, 2),
ylab = expression(bar(chi)), xlab = 'p')
abline(h = 1, lty = 3, col = 'grey')
# Multivariate normal sample, chibar = 0 - strong asymptotic independence at penultimate level
dat <- mvrnorm(n = 1000, mu = c(0, 0), Sigma = cbind(c(1, 0.75), c(0.75, 1)))
chibar(dat, 'tem', q = 0.1)
chibar_est <- t(sapply(s, function(keep){chibar(dat, 'profile', qu = keep)}))
matplot(s, chibar_est, type = 'l', col = c(1, 2, 2), lty = c(1, 2, 2),
ylab = expression(bar(chi)), xlab = 'p')
abline(h = 1, lty = 3, col = 'grey')
}
Run the code above in your browser using DataLab