Density function, distribution function, quantile function and random number generation for the generalized extreme value distribution.
qgev(p, loc = 0, scale = 1, shape = 0, lower.tail = TRUE, log.p = FALSE)rgev(n, loc = 0, scale = 1, shape = 0)
dgev(x, loc = 0, scale = 1, shape = 0, log = FALSE)
pgev(q, loc = 0, scale = 1, shape = 0, lower.tail = TRUE, log.p = FALSE)
vector of probabilities
scalar or vector of location parameters whose length matches that of the input
scalar or vector of positive scale parameters whose length matches that of the input
scalar shape parameter
logical; if TRUE
(default), returns the distribution function, otherwise the survival function
scalar number of observations
vector of quantiles
logical; if TRUE
, probabilities \(p\) are given as
\(\log(p)\).
Leo Belzile, with code adapted from Paul Northrop
The distribution function of a GEV distribution with parameters
loc
= \(\mu\), scale
= \(\sigma\) and
shape
= \(\xi\) is
$$F(x) = \exp\{-[1 + \xi (x - \mu) / \sigma] ^ {-1/\xi} \}$$
for \(1 + \xi (x - \mu) / \sigma > 0\). If \(\xi = 0\) the
distribution function is defined as the limit as \(\xi\) tends to zero.
The quantile function, when evaluated at zero or one, returns the lower and upper endpoint, whether the latter is finite or not.
Jenkinson, A. F. (1955) The frequency distribution of the annual maximum (or minimum) of meteorological elements. Quart. J. R. Met. Soc., 81, 158-171. Chapter 3: tools:::Rd_expr_doi("10.1002/qj.49708134804")
Coles, S. G. (2001) An Introduction to Statistical Modeling of Extreme Values, Springer-Verlag, London. tools:::Rd_expr_doi("10.1007/978-1-4471-3675-0_3")