Likelihood, score function and information matrix, approximate ancillary statistics and sample space derivative for the generalized extreme value distribution parametrized in terms of the return level \(z\), scale and shape.
vector of retlev
, scale
and shape
sample vector
tail probability, corresponding to \((1-p)\)th quantile for \(z\)
string indicating whether to use the expected ('exp'
) or the observed ('obs'
- the default) information matrix.
number of observations
vector calculated by gevr.Vfun
gevr.ll(par, dat, p)
gevr.ll.optim(par, dat, p)
gevr.score(par, dat, p)
gevr.infomat(par, dat, p, method = c('obs', 'exp'), nobs = length(dat))
gevr.Vfun(par, dat, p)
gevr.phi(par, dat, p, V)
gevr.dphi(par, dat, p, V)
gevr.ll
: log likelihood
gevr.ll.optim
: negative log likelihood parametrized in terms of return levels, log(scale)
and shape in order to perform unconstrained optimization
gevr.score
: score vector
gevr.infomat
: observed information matrix
gevr.Vfun
: vector implementing conditioning on approximate ancillary statistics for the TEM
gevr.phi
: canonical parameter in the local exponential family approximation
gevr.dphi
: derivative matrix of the canonical parameter in the local exponential family approximation
Leo Belzile