Likelihood, score function and information matrix for the r-largest observations likelihood.
vector of loc
, scale
and shape
an n
by r
sample matrix, ordered from largest to smallest in each row
string indicating whether to use the expected ('exp'
) or the observed ('obs'
- the default) information matrix.
number of observations for the expected information matrix. Default to nrow(dat)
if dat
is provided.
number of order statistics kept. Default to ncol(dat)
rlarg.ll(par, dat, u, np)
rlarg.score(par, dat)
rlarg.infomat(par, dat, method = c('obs', 'exp'), nobs = nrow(dat), r = ncol(dat))
rlarg.ll
: log likelihood
rlarg.score
: score vector
rlarg.infomat
: observed or expected information matrix
Leo Belzile
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer, 209 p.
Smith, R.L. (1986). Extreme value theory based on the r largest annual events, Journal of Hydrology, 86(1-2), 27--43, http://dx.doi.org/10.1016/0022-1694(86)90004-1
.