# NOT RUN {
require(mgcv);require(survival)
## First define functions for producing Poisson model data frame
app <- function(x,t,to) {
## wrapper to approx for calling from apply...
y <- if (sum(!is.na(x))<1) rep(NA,length(to)) else
approx(t,x,to,method="constant",rule=2)$y
if (is.factor(x)) factor(levels(x)[y],levels=levels(x)) else y
} ## app
tdpois <- function(dat,event="z",et="futime",t="day",status="status1",
id="id") {
## dat is data frame. id is patient id; et is event time; t is
## observation time; status is 1 for death 0 otherwise;
## event is name for Poisson response.
if (event %in% names(dat)) warning("event name in use")
require(utils) ## for progress bar
te <- sort(unique(dat[[et]][dat[[status]]==1])) ## event times
sid <- unique(dat[[id]])
inter <- interactive()
if (inter) prg <- txtProgressBar(min = 0, max = length(sid), initial = 0,
char = "=",width = NA, title="Progress", style = 3)
## create dataframe for poisson model data
dat[[event]] <- 0; start <- 1
dap <- dat[rep(1:length(sid),length(te)),]
for (i in 1:length(sid)) { ## work through patients
di <- dat[dat[[id]]==sid[i],] ## ith patient's data
tr <- te[te <= di[[et]][1]] ## times required for this patient
## Now do the interpolation of covariates to event times...
um <- data.frame(lapply(X=di,FUN=app,t=di[[t]],to=tr))
## Mark the actual event...
if (um[[et]][1]==max(tr)&&um[[status]][1]==1) um[[event]][nrow(um)] <- 1
um[[et]] <- tr ## reset time to relevant event times
dap[start:(start-1+nrow(um)),] <- um ## copy to dap
start <- start + nrow(um)
if (inter) setTxtProgressBar(prg, i)
}
if (inter) close(prg)
dap[1:(start-1),]
} ## tdpois
## The following typically takes a minute or less...
# }
# NOT RUN {
## Convert pbcseq to equivalent Poisson form...
pbcseq$status1 <- as.numeric(pbcseq$status==2) ## death indicator
pb <- tdpois(pbcseq) ## conversion
pb$tf <- factor(pb$futime) ## add factor for event time
## Fit Poisson model...
b <- bam(z ~ tf - 1 + sex + trt + s(sqrt(protime)) + s(platelet)+ s(age)+
s(bili)+s(albumin), family=poisson,data=pb,discrete=TRUE,nthreads=2)
par(mfrow=c(2,3))
plot(b,scale=0)
## compute residuals...
chaz <- tapply(fitted(b),pb$id,sum) ## cum haz by subject
d <- tapply(pb$z,pb$id,sum) ## censoring indicator
mrsd <- d - chaz ## Martingale
drsd <- sign(mrsd)*sqrt(-2*(mrsd + d*log(chaz))) ## deviance
## plot survivor function and s.e. band for subject 25
te <- sort(unique(pb$futime)) ## event times
di <- pbcseq[pbcseq$id==25,] ## data for subject 25
pd <- data.frame(lapply(X=di,FUN=app,t=di$day,to=te)) ## interpolate to te
pd$tf <- factor(te)
X <- predict(b,newdata=pd,type="lpmatrix")
eta <- drop(X%*%coef(b)); H <- cumsum(exp(eta))
J <- apply(exp(eta)*X,2,cumsum)
se <- diag(J%*%vcov(b)%*%t(J))^.5
plot(stepfun(te,c(1,exp(-H))),do.points=FALSE,ylim=c(0.7,1),
ylab="S(t)",xlab="t (days)",main="",lwd=2)
lines(stepfun(te,c(1,exp(-H+se))),do.points=FALSE)
lines(stepfun(te,c(1,exp(-H-se))),do.points=FALSE)
rug(pbcseq$day[pbcseq$id==25]) ## measurement times
# }
Run the code above in your browser using DataLab