# NOT RUN {
## The first two examples here iluustrate models that cause
## gam.side to impose constraints, but both are a bad way
## of estimating such models. The 3rd example is the right
## way....
set.seed(7)
require(mgcv)
dat <- gamSim(n=400,scale=2) ## simulate data
## estimate model with redundant smooth interaction (bad idea).
b<-gam(y~s(x0)+s(x1)+s(x0,x1)+s(x2),data=dat)
plot(b,pages=1)
## Simulate data with real interation...
dat <- gamSim(2,n=500,scale=.1)
old.par<-par(mfrow=c(2,2))
## a fully nested tensor product example (bad idea)
b <- gam(y~s(x,bs="cr",k=6)+s(z,bs="cr",k=6)+te(x,z,k=6),
data=dat$data)
plot(b)
old.par<-par(mfrow=c(2,2))
## A fully nested tensor product example, done properly,
## so that gam.side is not needed to ensure identifiability.
## ti terms are designed to produce interaction smooths
## suitable for adding to main effects (we could also have
## used s(x) and s(z) without a problem, but not s(z,x)
## or te(z,x)).
b <- gam(y ~ ti(x,k=6) + ti(z,k=6) + ti(x,z,k=6),
data=dat$data)
plot(b)
par(old.par)
rm(dat)
# }
Run the code above in your browser using DataLab