# NOT RUN {
### matrix argument `linear operator' smoothing
library(mgcv)
set.seed(0)
###############################
## simple summation example...#
###############################
n<-400
sig<-2
x <- runif(n, 0, .9)
f2 <- function(x) 0.2*x^11*(10*(1-x))^6+10*(10*x)^3*(1-x)^10
x1 <- x + .1
f <- f2(x) + f2(x1) ## response is sum of f at two adjacent x values
y <- f + rnorm(n)*sig
X <- matrix(c(x,x1),n,2) ## matrix covariate contains both x values
b <- gam(y~s(X))
plot(b) ## reconstruction of f
plot(f,fitted(b))
## example of prediction with summation convention...
predict(b,list(X=X[1:3,]))
## example of prediction that simply evaluates smooth (no summation)...
predict(b,data.frame(X=c(.2,.3,.7)))
######################################################################
## Simple random effect model example.
## model: y[i] = f(x[i]) + b[k[i]] - b[j[i]] + e[i]
## k[i] and j[i] index levels of i.i.d. random effects, b.
######################################################################
set.seed(7)
n <- 200
x <- runif(n) ## a continuous covariate
## set up a `factor matrix'...
fac <- factor(sample(letters,n*2,replace=TRUE))
dim(fac) <- c(n,2)
## simulate data from such a model...
nb <- length(levels(fac))
b <- rnorm(nb)
y <- 20*(x-.3)^4 + b[fac[,1]] - b[fac[,2]] + rnorm(n)*.5
L <- matrix(-1,n,2);L[,1] <- 1 ## the differencing 'by' variable
mod <- gam(y ~ s(x) + s(fac,by=L,bs="re"),method="REML")
gam.vcomp(mod)
plot(mod,page=1)
## example of prediction using matrices...
dat <- list(L=L[1:20,],fac=fac[1:20,],x=x[1:20],y=y[1:20])
predict(mod,newdata=dat)
######################################################################
## multivariate integral example. Function `test1' will be integrated#
## (by midpoint quadrature) over 100 equal area sub-squares covering #
## the unit square. Noise is added to the resulting simulated data. #
## `test1' is estimated from the resulting data using two alternative#
## smooths. #
######################################################################
test1 <- function(x,z,sx=0.3,sz=0.4)
{ (pi**sx*sz)*(1.2*exp(-(x-0.2)^2/sx^2-(z-0.3)^2/sz^2)+
0.8*exp(-(x-0.7)^2/sx^2-(z-0.8)^2/sz^2))
}
## create quadrature (integration) grid, in useful order
ig <- 5 ## integration grid within square
mx <- mz <- (1:ig-.5)/ig
ix <- rep(mx,ig);iz <- rep(mz,rep(ig,ig))
og <- 10 ## observarion grid
mx <- mz <- (1:og-1)/og
ox <- rep(mx,og);ox <- rep(ox,rep(ig^2,og^2))
oz <- rep(mz,rep(og,og));oz <- rep(oz,rep(ig^2,og^2))
x <- ox + ix/og;z <- oz + iz/og ## full grid, subsquare by subsquare
## create matrix covariates...
X <- matrix(x,og^2,ig^2,byrow=TRUE)
Z <- matrix(z,og^2,ig^2,byrow=TRUE)
## create simulated test data...
dA <- 1/(og*ig)^2 ## quadrature square area
F <- test1(X,Z) ## evaluate on grid
f <- rowSums(F)*dA ## integrate by midpoint quadrature
y <- f + rnorm(og^2)*5e-4 ## add noise
## ... so each y is a noisy observation of the integral of `test1'
## over a 0.1 by 0.1 sub-square from the unit square
## Now fit model to simulated data...
L <- X*0 + dA
## ... let F be the matrix of the smooth evaluated at the x,z values
## in matrices X and Z. rowSums(L*F) gives the model predicted
## integrals of `test1' corresponding to the observed `y'
L1 <- rowSums(L) ## smooths are centred --- need to add in L%*%1
## fit models to reconstruct `test1'....
b <- gam(y~s(X,Z,by=L)+L1-1) ## (L1 and const are confounded here)
b1 <- gam(y~te(X,Z,by=L)+L1-1) ## tensor product alternative
## plot results...
old.par<-par(mfrow=c(2,2))
x<-runif(n);z<-runif(n);
xs<-seq(0,1,length=30);zs<-seq(0,1,length=30)
pr<-data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth<-matrix(test1(pr$x,pr$z),30,30)
contour(xs,zs,truth)
plot(b)
vis.gam(b,view=c("X","Z"),cond=list(L1=1,L=1),plot.type="contour")
vis.gam(b1,view=c("X","Z"),cond=list(L1=1,L=1),plot.type="contour")
####################################
## A "signal" regression example...#
####################################
rf <- function(x=seq(0,1,length=100)) {
## generates random functions...
m <- ceiling(runif(1)*5) ## number of components
f <- x*0;
mu <- runif(m,min(x),max(x));sig <- (runif(m)+.5)*(max(x)-min(x))/10
for (i in 1:m) f <- f+ dnorm(x,mu[i],sig[i])
f
}
x <- seq(0,1,length=100) ## evaluation points
## example functional predictors...
par(mfrow=c(3,3));for (i in 1:9) plot(x,rf(x),type="l",xlab="x")
## simulate 200 functions and store in rows of L...
L <- matrix(NA,200,100)
for (i in 1:200) L[i,] <- rf() ## simulate the functional predictors
f2 <- function(x) { ## the coefficient function
(0.2*x^11*(10*(1-x))^6+10*(10*x)^3*(1-x)^10)/10
}
f <- f2(x) ## the true coefficient function
y <- L%*%f + rnorm(200)*20 ## simulated response data
## Now fit the model E(y) = L%*%f(x) where f is a smooth function.
## The summation convention is used to evaluate smooth at each value
## in matrix X to get matrix F, say. Then rowSum(L*F) gives E(y).
## create matrix of eval points for each function. Note that
## `smoothCon' is smart and will recognize the duplication...
X <- matrix(x,200,100,byrow=TRUE)
b <- gam(y~s(X,by=L,k=20))
par(mfrow=c(1,1))
plot(b,shade=TRUE);lines(x,f,col=2)
# }
Run the code above in your browser using DataLab