# NOT RUN {
require(mgcv)
# first an un-penalized example - fit E(y)=a+bx subject to a>0
set.seed(0)
n <- 100
x <- runif(n); y <- x - 0.2 + rnorm(n)*0.1
M <- list(X=matrix(0,n,2),p=c(0.1,0.5),off=array(0,0),S=list(),
Ain=matrix(0,1,2),bin=0,C=matrix(0,0,0),sp=array(0,0),y=y,w=y*0+1)
M$X[,1] <- 1; M$X[,2] <- x; M$Ain[1,] <- c(1,0)
pcls(M) -> M$p
plot(x,y); abline(M$p,col=2); abline(coef(lm(y~x)),col=3)
# Penalized example: monotonic penalized regression spline .....
# Generate data from a monotonic truth.
x <- runif(100)*4-1;x <- sort(x);
f <- exp(4*x)/(1+exp(4*x)); y <- f+rnorm(100)*0.1; plot(x,y)
dat <- data.frame(x=x,y=y)
# Show regular spline fit (and save fitted object)
f.ug <- gam(y~s(x,k=10,bs="cr")); lines(x,fitted(f.ug))
# Create Design matrix, constraints etc. for monotonic spline....
sm <- smoothCon(s(x,k=10,bs="cr"),dat,knots=NULL)[[1]]
F <- mono.con(sm$xp); # get constraints
G <- list(X=sm$X,C=matrix(0,0,0),sp=f.ug$sp,p=sm$xp,y=y,w=y*0+1)
G$Ain <- F$A;G$bin <- F$b;G$S <- sm$S;G$off <- 0
p <- pcls(G); # fit spline (using s.p. from unconstrained fit)
fv<-Predict.matrix(sm,data.frame(x=x))%*%p
lines(x,fv,col=2)
# now a tprs example of the same thing....
f.ug <- gam(y~s(x,k=10)); lines(x,fitted(f.ug))
# Create Design matrix, constriants etc. for monotonic spline....
sm <- smoothCon(s(x,k=10,bs="tp"),dat,knots=NULL)[[1]]
xc <- 0:39/39 # points on [0,1]
nc <- length(xc) # number of constraints
xc <- xc*4-1 # points at which to impose constraints
A0 <- Predict.matrix(sm,data.frame(x=xc))
# ... A0%*%p evaluates spline at xc points
A1 <- Predict.matrix(sm,data.frame(x=xc+1e-6))
A <- (A1-A0)/1e-6
## ... approx. constraint matrix (A%*%p is -ve
## spline gradient at points xc)
G <- list(X=sm$X,C=matrix(0,0,0),sp=f.ug$sp,y=y,w=y*0+1,S=sm$S,off=0)
G$Ain <- A; # constraint matrix
G$bin <- rep(0,nc); # constraint vector
G$p <- rep(0,10); G$p[10] <- 0.1
# ... monotonic start params, got by setting coefs of polynomial part
p <- pcls(G); # fit spline (using s.p. from unconstrained fit)
fv2 <- Predict.matrix(sm,data.frame(x=x))%*%p
lines(x,fv2,col=3)
######################################
## monotonic additive model example...
######################################
## First simulate data...
set.seed(10)
f1 <- function(x) 5*exp(4*x)/(1+exp(4*x));
f2 <- function(x) {
ind <- x > .5
f <- x*0
f[ind] <- (x[ind] - .5)^2*10
f
}
f3 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 +
10 * (10 * x)^3 * (1 - x)^10
n <- 200
x <- runif(n); z <- runif(n); v <- runif(n)
mu <- f1(x) + f2(z) + f3(v)
y <- mu + rnorm(n)
## Preliminary unconstrained gam fit...
G <- gam(y~s(x)+s(z)+s(v,k=20),fit=FALSE)
b <- gam(G=G)
## generate constraints, by finite differencing
## using predict.gam ....
eps <- 1e-7
pd0 <- data.frame(x=seq(0,1,length=100),z=rep(.5,100),
v=rep(.5,100))
pd1 <- data.frame(x=seq(0,1,length=100)+eps,z=rep(.5,100),
v=rep(.5,100))
X0 <- predict(b,newdata=pd0,type="lpmatrix")
X1 <- predict(b,newdata=pd1,type="lpmatrix")
Xx <- (X1 - X0)/eps ## Xx %*% coef(b) must be positive
pd0 <- data.frame(z=seq(0,1,length=100),x=rep(.5,100),
v=rep(.5,100))
pd1 <- data.frame(z=seq(0,1,length=100)+eps,x=rep(.5,100),
v=rep(.5,100))
X0 <- predict(b,newdata=pd0,type="lpmatrix")
X1 <- predict(b,newdata=pd1,type="lpmatrix")
Xz <- (X1-X0)/eps
G$Ain <- rbind(Xx,Xz) ## inequality constraint matrix
G$bin <- rep(0,nrow(G$Ain))
G$C = matrix(0,0,ncol(G$X))
G$sp <- b$sp
G$p <- coef(b)
G$off <- G$off-1 ## to match what pcls is expecting
## force inital parameters to meet constraint
G$p[11:18] <- G$p[2:9]<- 0
p <- pcls(G) ## constrained fit
par(mfrow=c(2,3))
plot(b) ## original fit
b$coefficients <- p
plot(b) ## constrained fit
## note that standard errors in preceding plot are obtained from
## unconstrained fit
# }
Run the code above in your browser using DataLab