# NOT RUN {
require(mgcv)
set.seed(0)
n <- 400
f <- function(la,lo) { ## a test function...
sin(lo)*cos(la-.3)
}
## generate with uniform density on sphere...
lo <- runif(n)*2*pi-pi ## longitude
la <- runif(3*n)*pi-pi/2
ind <- runif(3*n)<=cos(la)
la <- la[ind];
la <- la[1:n]
ff <- f(la,lo)
y <- ff + rnorm(n)*.2 ## test data
## generate data for plotting truth...
lam <- seq(-pi/2,pi/2,length=30)
lom <- seq(-pi,pi,length=60)
gr <- expand.grid(la=lam,lo=lom)
fz <- f(gr$la,gr$lo)
zm <- matrix(fz,30,60)
require(mgcv)
dat <- data.frame(la = la *180/pi,lo = lo *180/pi,y=y)
## fit spline on sphere model...
bp <- gam(y~s(la,lo,bs="sos",k=60),data=dat)
## pure knot based alternative...
ind <- sample(1:n,100)
bk <- gam(y~s(la,lo,bs="sos",k=60),
knots=list(la=dat$la[ind],lo=dat$lo[ind]),data=dat)
b <- bp
cor(fitted(b),ff)
## plot results and truth...
pd <- data.frame(la=gr$la*180/pi,lo=gr$lo*180/pi)
fv <- matrix(predict(b,pd),30,60)
par(mfrow=c(2,2),mar=c(4,4,1,1))
contour(lom,lam,t(zm))
contour(lom,lam,t(fv))
plot(bp,rug=FALSE)
plot(bp,scheme=1,theta=-30,phi=20,pch=19,cex=.5)
# }
Run the code above in your browser using DataLab