# NOT RUN {
rzip <- function(gamma,theta= c(-2,.3)) {
## generate zero inflated Poisson random variables, where
## lambda = exp(gamma), eta = theta[1] + exp(theta[2])*gamma
## and 1-p = exp(-exp(eta)).
y <- gamma; n <- length(y)
lambda <- exp(gamma)
eta <- theta[1] + exp(theta[2])*gamma
p <- 1- exp(-exp(eta))
ind <- p > runif(n)
y[!ind] <- 0
np <- sum(ind)
## generate from zero truncated Poisson, given presence...
y[ind] <- qpois(runif(np,dpois(0,lambda[ind]),1),lambda[ind])
y
}
library(mgcv)
## Simulate some ziP data...
set.seed(1);n<-400
dat <- gamSim(1,n=n)
dat$y <- rzip(dat$f/4-1)
b <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=ziP(),data=dat)
b$outer.info ## check convergence!!
b
plot(b,pages=1)
plot(b,pages=1,unconditional=TRUE) ## add s.p. uncertainty
gam.check(b)
## more checking...
## 1. If the zero inflation rate becomes decoupled from the linear predictor,
## it is possible for the linear predictor to be almost unbounded in regions
## containing many zeroes. So examine if the range of predicted values
## is sane for the zero cases?
range(predict(b,type="response")[b$y==0])
## 2. Further plots...
par(mfrow=c(2,2))
plot(predict(b,type="response"),residuals(b))
plot(predict(b,type="response"),b$y);abline(0,1,col=2)
plot(b$linear.predictors,b$y)
qq.gam(b,rep=20,level=1)
## 3. Refit fixing the theta parameters at their estimated values, to check we
## get essentially the same fit...
thb <- b$family$getTheta()
b0 <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=ziP(theta=thb),data=dat)
b;b0
## Example fit forcing minimum linkage of prob present and
## linear predictor. Can fix some identifiability problems.
b2 <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=ziP(b=.3),data=dat)
# }
Run the code above in your browser using DataLab