# NOT RUN {
library(mgcv);library(Matrix)
## simulate some data creating a marginal matrix sequence...
set.seed(0);n <- 4000
dat <- gamSim(1,n=n,dist="normal",scale=2)
dat$x4 <- runif(n)
dat$y <- dat$y + 3*exp(dat$x4*15-5)/(1+exp(dat$x4*15-5))
dat$fac <- factor(sample(1:20,n,replace=TRUE))
G <- gam(y ~ te(x0,x2,k=5,bs="bs",m=1)+s(x1)+s(x4)+s(x3,fac,bs="fs"),
fit=FALSE,data=dat,discrete=TRUE)
p <- ncol(G$X)
## create a sparse version...
Xs <- list(); r <- G$kd*0; off <- list()
for (i in 1:length(G$Xd)) Xs[[i]] <- as(G$Xd[[i]],"dgCMatrix")
for (j in 1:nrow(G$ks)) { ## create the reverse indices...
nr <- nrow(Xs[[j]]) ## make sure we always tab to final stored row
for (i in G$ks[j,1]:(G$ks[j,2]-1)) {
r[,i] <- (1:length(G$kd[,i]))[order(G$kd[,i])]
off[[i]] <- cumsum(c(1,tabulate(G$kd[,i],nbins=nr)))-1
}
}
attr(Xs,"off") <- off;attr(Xs,"r") <- r
par(mfrow=c(2,3))
beta <- runif(p)
Xb0 <- Xbd(G$Xd,beta,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
Xb1 <- Xbd(Xs,beta,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
range(Xb0-Xb1);plot(Xb0,Xb1,pch=".")
bb <- cbind(beta,beta+runif(p)*.3)
Xb0 <- Xbd(G$Xd,bb,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
Xb1 <- Xbd(Xs,bb,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
range(Xb0-Xb1);plot(Xb0,Xb1,pch=".")
w <- runif(n)
XWy0 <- XWyd(G$Xd,w,y=dat$y,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
XWy1 <- XWyd(Xs,w,y=dat$y,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
range(XWy1-XWy0);plot(XWy1,XWy0,pch=".")
yy <- cbind(dat$y,dat$y+runif(n)-.5)
XWy0 <- XWyd(G$Xd,w,y=yy,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
XWy1 <- XWyd(Xs,w,y=yy,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
range(XWy1-XWy0);plot(XWy1,XWy0,pch=".")
A <- XWXd(G$Xd,w,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
B <- XWXd(Xs,w,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
range(A-B);plot(A,B,pch=".")
V <- crossprod(matrix(runif(p*p),p,p))
ii <- c(20:30,100:200)
jj <- c(50:90,150:160)
V[ii,jj] <- 0;V[jj,ii] <- 0
d1 <- diagXVXd(G$Xd,V,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
Vs <- as(V,"dgCMatrix")
d2 <- diagXVXd(Xs,Vs,G$kd,G$ks,G$ts,G$dt,G$v,G$qc)
range(d1-d2);plot(d1,d2,pch=".")
# }
Run the code above in your browser using DataLab