library(mgcv)
set.seed(3)
n<-400
## Simulate data...
dat <- gamSim(1,n=n,dist="poisson",scale=.2)
dat$y <- rTweedie(exp(dat$f),p=1.3,phi=.5) ## Tweedie response
## Fit a fixed p Tweedie, with wrong link ...
b <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=Tweedie(1.25,power(.1)),
data=dat)
plot(b,pages=1)
print(b)
## Same by approximate REML...
b1 <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=Tweedie(1.25,power(.1)),
data=dat,method="REML")
plot(b1,pages=1)
print(b1)
## estimate p as part of fitting
b2 <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=tw(),
data=dat,method="REML")
plot(b2,pages=1)
print(b2)
rm(dat)
Run the code above in your browser using DataLab