library(mgcv)
set.seed(6); n <- 2000
dat <- gamSim(1,n=n,dist="poisson",scale=.1) ## simulate Poi data
## illustration that cpois an poisson give same results if there
## is no censoring...
b0 <- gam(y~s(x0,bs="cr")+s(x1,bs="cr")+s(x2,bs="cr")+
s(x3,bs="cr"),family=poisson,data=dat,method="REML")
plot(b0,pages=1,scheme=2)
b1 <- gam(y~s(x0,bs="cr")+s(x1,bs="cr")+s(x2,bs="cr")+
s(x3,bs="cr"),family=cpois,data=dat)
plot(b1,pages=1,scheme=2)
b0;b1
## Now censor some observations...
dat1 <- dat
m <- 300
y <- matrix(dat$y,n,ncol=2) ## response matrix
ii <- sample(n,3*m) ## censor these
for (i in 1:m) { ## right, left, interval...
j <- ii[i]; if (y[j,1] > 4.5) y[j,] <- c(4.5,Inf)
j <- ii[m+i]; if (y[j,1] < 2.5) y[j,] <- c(2.5,-Inf)
j <- ii[2*m+i];if (y[j,1] > 1.5 & y[j,1]< 5.5) y[j,] <- c(1.5,5.5)
}
n - sum(y[,1]==y[,2]) ## number of censored obs
dat1$y <- y
## now fit model with censoring...
b2 <- gam(y~s(x0,bs="cr")+s(x1,bs="cr")+s(x2,bs="cr")+
s(x3,bs="cr"),family=cpois,data=dat1)
plot(b2,pages=1,scheme=2);b2
Run the code above in your browser using DataLab