if (FALSE) {
## We specify a tvmvar model, sample from it and recover it
# a) Set up time-varying mvar model
p <- 6 # Six variables
type <- c("c", "c", "c", "c", "g", "g") # 4 categorical, 2 gaussians
level <- c(2, 2, 4, 4, 1, 1) # 2 categoricals with 2 categories, 2 with 5
max_level <- max(level)
lags <- c(1, 3, 9) # include lagged effects of order 1, 3, 9
n_lags <- length(lags)
N <- 5000
# Specify thresholds
thresholds <- list()
thresholds[[1]] <- matrix(0, ncol=2, nrow=N)
thresholds[[2]] <- matrix(0, ncol=2, nrow=N)
thresholds[[3]] <- matrix(0, ncol=4, nrow=N)
thresholds[[4]] <- matrix(0, ncol=4, nrow=N)
thresholds[[5]] <- matrix(0, ncol=1, nrow=N)
thresholds[[6]] <- matrix(0, ncol=1, nrow=N)
# Specify standard deviations for the Gaussians
sds <- matrix(NA, ncol=6, nrow=N)
sds[,5:6] <- 1
# Create coefficient array
coefarray <- array(0, dim=c(p, p, max_level, max_level, n_lags, N))
# a.1) interaction between continuous 5<-6, lag=3
coefarray[5, 6, 1, 1, 2, ] <- c(rep(.5, N/2), rep(0, N/2))
# a.2) interaction between 1<-3, lag=1
m1 <- matrix(0, nrow=level[2], ncol=level[4])
m1[1, 1:2] <- 1
m1[2, 3:4] <- 1
coefarray[1, 3, 1:level[2], 1:level[4], 1, ] <- m1
# a.3) interaction between 1<-5, lag=9
coefarray[1, 5, 1:level[1], 1:level[5], 3, ] <- c(0, 1)
dim(coefarray)
# b) Sample
set.seed(1)
dlist <- tvmvarsampler(coefarray = coefarray,
lags = lags,
thresholds = thresholds,
sds = sds,
type = type,
level = level,
pbar = TRUE)
# c) Recover: time-varying mVAR model
set.seed(1)
tvmvar_obj <- tvmvar(data = dlist$data,
type = type,
level = level,
lambdaSel = "CV",
lags = c(1, 3, 9),
estpoints = seq(0, 1, length=10),
bandwidth = .05)
tvmvar_obj$wadj[5, 6, 2, ] # parameter goes down, as specified
tvmvar_obj$wadj[1, 3, 1, ]
tvmvar_obj$wadj[1, 5, 3, ]
# For more examples see https://github.com/jmbh/mgmDocumentation
}
Run the code above in your browser using DataLab