Learn R Programming

mi (version 0.10-2)

mi.continuous: Elementary function: linear regression to impute a continuous variable.

Description

Imputes univariate missing data using linear regression.

Usage

mi.continuous(formula, data = NULL, start = NULL, maxit = 100,
    draw.from.beta = TRUE, missing.index = NULL, ...)

Arguments

formula
an object of class '"formula"' (or one that can be coerced to that class): a symbolic description of the model to be fitted. See bayesglm 'formula' for details.
data
A data frame containing the incomplete data and the matrix of the complete predictors.
start
Starting value for bayesglm.
maxit
Maximum number of iteration for bayesglm. The default is 100.
draw.from.beta
Draws from posterior distribution of the betas to add randomness.
missing.index
The index of missing units of the outcome variable
...
Currently not used.

Value

  • modelA summary of the fitted model.
  • expectedThe expected values estimated by the model.
  • randomVector of length n.mis of random predicted values predicted by using the normal distribution.

Details

see bayesglm

References

Yu-Sung Su, Andrew Gelman, Jennifer Hill, Masanao Yajima. (2011). Multiple Imputation with Diagnostics (mi) in R: Opening Windows into the Black Box. Journal of Statistical Software 45(2). Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.

See Also

mi.info, mi.method, mi

Examples

Run this code
# true data
  x<-rnorm(100,0,1) # N(0,1)
  y<-rnorm(100,(1+2*x),1.2) # y ~ 1 + 2*x + N(0,1.2)
  # create artificial missingness on y
  y[seq(1,100,10)]<-NA
  dat.xy <- data.frame(x,y)
  # imputation
  mi.continuous(y~x, data = dat.xy)

Run the code above in your browser using DataLab