Learn R Programming

mi (version 0.10-2)

random.imp: Random Imputation of Missing Data

Description

Simple random imputation of missing values in given data set.

Usage

random.imp(data, imp.method = c( "bootstrap", "pca" ) , ...)

Arguments

data
A vector, matrix, or data frame with missing data.
imp.method
Character to specify which method of random imputation to use. Default is "bootstrap". Note: pca is not implemented in the current version.
...
Unused

Value

  • Data with its missing values imputed using the specified method.

Details

Impute missing values based on the observed data for the variable.

References

Andrew Gelman and Jennifer Hill. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.

See Also

mi

Examples

Run this code
data(CHAIN)
  data.imp <- random.imp(CHAIN)

Run the code above in your browser using DataLab