imp <- mice(nhanes)
glm.mids((hyp==2)~bmi+chl, data=imp)
# fit
# $call:
# glm.mids(formula = (hyp == 2) ~ bmi + chl, data = imp)
#
# $call1:
# mice(data = nhanes)
#
# $nmis:
# age bmi hyp chl
# 0 9 8 10
#
# $analyses:
# $analyses[[1]]:
# Call:
# glm(formula = formula, data = data.i)
#
# Coefficients:
# (Intercept) bmi chl
# -0.4746337 -0.01565534 0.005417846
#
# Degrees of Freedom: 25 Total; 22 Residual
# Residual Deviance: 2.323886
#
# $analyses[[2]]:
# Call:
# glm(formula = formula, data = data.i)
#
# Coefficients:
# (Intercept) bmi chl
# -0.1184695 -0.02885779 0.006090282
#
# Degrees of Freedom: 25 Total; 22 Residual
# Residual Deviance: 3.647927
#
Run the code above in your browser using DataLab