Learn R Programming

mice (version 2.7)

pool.r.squared: Pooling: R squared

Description

Pools R^2 of m repeated complete data models.

Usage

pool.r.squared(object,adjusted=FALSE)

Arguments

object
An object of class 'mira', produced by lm.mids or with.mids with lm as modelling function.
adjusted
A logical value. If adjusted=TRUE then the adjusted R^2 is calculated. The default value is FALSE.

Value

  • Returns a 1x4 table with elements:
  • estThe pooled R^2 estimate
  • lo95The 95 % lower bound of the pooled R^2.
  • hi95The 95 % upper bound of the pooled R^2.
  • fmiThe fraction of missing information due to nonresponse.

Details

The function pools the coefficients of determination R^2 or the adjusted coefficients of determination (R^2_a) obtained with the lm modelling function. For pooling it uses the Fisher z-transformation.

References

Harel, O (2009). The estimation of R^2 and adjusted R^2 in incomplete data sets using multiple imputation, Journal of Applied Statistics (to appear). Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and Sons. Van Buuren, S., Groothuis-Oudshoorn, K. (2010) MICE: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, forthcoming. http://www.stefvanbuuren.nl/publications/MICE in R - Draft.pdf

See Also

pool,pool.scalar

Examples

Run this code
imp<-mice(nhanes)

fit<-lm.mids(chl~age+hyp+bmi,imp)
pool.r.squared(fit)
pool.r.squared(fit,adjusted=TRUE) 

#fit<-lm.mids(chl~age+hyp+bmi,imp)
#
#> pool.r.squared(fit)
#          est     lo 95     hi 95       fmi
#R^2 0.5108041 0.1479687 0.7791927 0.3024413
#
#> pool.r.squared(fit,adjusted=TRUE) 
#          est      lo 95    hi 95       fmi
#adj R^2 0.4398066 0.08251427 0.743172 0.3404165
#

Run the code above in your browser using DataLab