# simulate some data
# x,y ... level 1 variables
# v,w ... level 2 variables
G <- 250 # number of groups
n <- 20 # number of persons
beta <- .3 # regression coefficient
rho <- .30 # residual intraclass correlation
rho.miss <- .10 # correlation with missing response
missrate <- .50 # missing proportion
y1 <- rep(rnorm(G, sd = sqrt(rho)), each = n) + rnorm(G * n, sd = sqrt(1 - rho))
w <- rep(round(rnorm(G), 2), each = n)
v <- rep(round(runif(G, 0, 3)), each = n)
x <- rnorm(G * n)
y <- y1 + beta * x + .2 * w + .1 * v
dfr0 <- dfr <- data.frame("group" = rep(1:G, each = n), "x" = x, "y" = y, "w" = w, "v" = v)
dfr[rho.miss * x + rnorm(G * n, sd = sqrt(1 - rho.miss)) < qnorm(missrate), "y"] <- NA
dfr[rep(rnorm(G), each = n) < qnorm(missrate), "w"] <- NA
dfr[rep(rnorm(G), each = n) < qnorm(missrate), "v"] <- NA
# empty mice imputation
imp0 <- mice(as.matrix(dfr), maxit = 0)
predM <- imp0$predictorMatrix
impM <- imp0$method
# multilevel imputation
predM1 <- predM
predM1[c("w", "y", "v"), "group"] <- -2
predM1["y", "x"] <- 1 # fixed x effects imputation
impM1 <- impM
impM1[c("y", "w", "v")] <- c("2l.pan", "2lonly.norm", "2lonly.pmm")
# turn v into a categorical variable
dfr$v <- as.factor(dfr$v)
levels(dfr$v) <- LETTERS[1:4]
# y ... imputation using pan
# w ... imputation at level 2 using norm
# v ... imputation at level 2 using pmm
# skip imputation on solaris
is.solaris <- function() grepl("SunOS", Sys.info()["sysname"])
if (!is.solaris()) {
imp <- mice(dfr,
m = 1, predictorMatrix = predM1,
method = impM1, maxit = 1, paniter = 500
)
}
Run the code above in your browser using DataLab