Imputes univariate missing data using logistic regression
by a bootstrapped logistic regression model.
The bootstrap method draws a simple bootstrap sample with replacement
from the observed data y[ry] and x[ry, ].
mice.impute.logreg.boot(y, ry, x, wy = NULL, ...)Vector with imputed data, same type as y, and of length
sum(wy)
Vector to be imputed
Logical vector of length length(y) indicating the
the subset y[ry] of elements in y to which the imputation
model is fitted. The ry generally distinguishes the observed
(TRUE) and missing values (FALSE) in y.
Numeric design matrix with length(y) rows with predictors for
y. Matrix x may have no missing values.
Logical vector of length length(y). A TRUE value
indicates locations in y for which imputations are created.
Other named arguments.
Stef van Buuren, Karin Groothuis-Oudshoorn, 2000, 2011
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice:
Multivariate Imputation by Chained Equations in R. Journal of
Statistical Software, 45(3), 1-67.
tools:::Rd_expr_doi("10.18637/jss.v045.i03")
Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman & Hall/CRC. Boca Raton, FL.
Other univariate imputation functions:
mice.impute.cart(),
mice.impute.lasso.logreg(),
mice.impute.lasso.norm(),
mice.impute.lasso.select.logreg(),
mice.impute.lasso.select.norm(),
mice.impute.lda(),
mice.impute.logreg(),
mice.impute.mean(),
mice.impute.midastouch(),
mice.impute.mnar.logreg(),
mice.impute.mpmm(),
mice.impute.norm.boot(),
mice.impute.norm.nob(),
mice.impute.norm.predict(),
mice.impute.norm(),
mice.impute.pmm(),
mice.impute.polr(),
mice.impute.polyreg(),
mice.impute.quadratic(),
mice.impute.rf(),
mice.impute.ri()