md.pattern(walking)
micemill <- function(n) {
for (i in 1:n) {
imp <<- mice.mids(imp) # global assignment
cors <- with(imp, cor(as.numeric(YA),
as.numeric(YB),
method = "kendall"
))
tau <<- rbind(tau, getfit(cors, s = TRUE)) # global assignment
}
}
plotit <- function() {
matplot(
x = 1:nrow(tau), y = tau,
ylab = expression(paste("Kendall's ", tau)),
xlab = "Iteration", type = "l", lwd = 1,
lty = 1:10, col = "black"
)
}
tau <- NULL
imp <- mice(walking, max = 0, m = 10, seed = 92786)
pred <- imp$pred
pred[, c("src", "age", "sex")] <- 0
imp <- mice(walking, max = 0, m = 3, seed = 92786, pred = pred)
micemill(5)
plotit()
### to get figure 9.8 van Buuren (2018) use m=10 and micemill(20)
Run the code above in your browser using DataLab