Learn R Programming

miceadds (version 3.16-18)

mice.1chain: Multiple Imputation by Chained Equations using One Chain

Description

This function modifies the mice::mice function to multiply impute a dataset using a long chain instead of multiple parallel chains which is the approach employed in mice::mice.

Usage

mice.1chain(data, burnin=10, iter=20, Nimp=10, method=NULL,
     where=NULL, visitSequence=NULL, blots=NULL, post=NULL,
     defaultMethod=c("pmm", "logreg", "polyreg", "polr"),
     printFlag=TRUE, seed=NA, data.init=NULL, ...)

# S3 method for mids.1chain summary(object,...)

# S3 method for mids.1chain print(x, ...)

# S3 method for mids.1chain plot(x, plot.burnin=FALSE, ask=TRUE, ...)

Value

A list with following entries

midsobj

Objects of class mids

datlist

List of multiply imputed datasets

datalong

Original and imputed dataset in the long format

implist

List of mids objects for every imputation

chainMpar

Trace of means for all imputed variables

chainVarpar

Trace of variances for all imputed variables

Arguments

data

Numeric matrix

burnin

Number of burn-in iterations

iter

Total number of imputations (larger than burnin)

Nimp

Number of imputations

method

See mice::mice

where

See mice::mice

visitSequence

See mice::mice

blots

See mice::mice

post

See mice::mice

defaultMethod

See mice::mice

printFlag

See mice::mice

seed

See mice::mice

data.init

See mice::mice

object

Object of class mids.1chain

x

Object of class mids.1chain

plot.burnin

An optional logical indicating whether burnin iterations should be included in the traceplot

ask

An optional logical indicating a user request for viewing next plot

...

See mice::mice

See Also

mice::mice

Examples

Run this code
if (FALSE) {

#############################################################################
# EXAMPLE 1: One chain nhanes data
#############################################################################

library(mice)
data(nhanes, package="mice")
set.seed(9090)

# nhanes data in one chain
imp.mi1 <- miceadds::mice.1chain( nhanes, burnin=5, iter=40, Nimp=4,
                 method=rep("norm", 4 ) )
summary(imp.mi1)       # summary of mids.1chain
plot( imp.mi1 ) # trace plot excluding burnin iterations
plot( imp.mi1, plot.burnin=TRUE ) # trace plot including burnin iterations

# select mids object
imp.mi2 <- imp.mi1$midsobj
summary(imp.mi2)    # summary of mids

# apply mice functionality lm.mids
mod <- with( imp.mi2, stats::lm( bmi ~ age ) )
summary( mice::pool( mod ) )

#############################################################################
# EXAMPLE 2: One chain (mixed data: numeric and factor)
#############################################################################

library(mice)
data(nhanes2, package="mice")
set.seed(9090)

# nhanes2 data in one chain
imp.mi1 <- miceadds::mice.1chain( nhanes2, burnin=5, iter=25, Nimp=5 )
# summary
summary( imp.mi1$midsobj )

#############################################################################
# EXAMPLE 3: Multiple imputation with counterfactuals for estimating
#            causal effects (average treatment effects)
# Schafer, J. L., & Kang, J. (2008). Average causal effects from nonrandomized
#    studies: a practical guide and simulated example.
#    Psychological Methods, 13, 279-313.
#############################################################################

data(data.ma01)
dat <- data.ma01[, 4:11]

# define counterfactuals for reading score for students with and
# without migrational background
dat$read.migrant1 <- ifelse( paste(dat$migrant)==1, dat$read, NA )
dat$read.migrant0 <- ifelse( paste(dat$migrant)==0, dat$read, NA )

# define imputation method
impmethod <- rep("pls", ncol(dat) )
names(impmethod) <- colnames(dat)

# define predictor matrix
pm <- 4*(1 - diag( ncol(dat) ) )    # 4 - use all interactions
rownames(pm) <- colnames(pm) <- colnames(dat)
pm[ c( "read.migrant0", "read.migrant1"), ] <- 0
# do not use counterfactuals for 'read' as a predictor
pm[, "read.migrant0"] <- 0
pm[, "read.migrant1"] <- 0
# define control variables for creation of counterfactuals
pm[ c( "read.migrant0", "read.migrant1"), c("hisei","paredu","female","books") ] <- 4
  ##   > pm
  ##                 math read migrant books hisei paredu female urban read.migrant1 read.migrant0
  ##   math             0    4       4     4     4      4      4     4             0             0
  ##   read             4    0       4     4     4      4      4     4             0             0
  ##   migrant          4    4       0     4     4      4      4     4             0             0
  ##   books            4    4       4     0     4      4      4     4             0             0
  ##   hisei            4    4       4     4     0      4      4     4             0             0
  ##   paredu           4    4       4     4     4      0      4     4             0             0
  ##   female           4    4       4     4     4      4      0     4             0             0
  ##   urban            4    4       4     4     4      4      4     0             0             0
  ##   read.migrant1    0    0       0     4     4      4      4     0             0             0
  ##   read.migrant0    0    0       0     4     4      4      4     0             0             0

# imputation using mice function and PLS imputation with
# predictive mean matching method 'pmm6'
imp <- mice::mice( dat, method=impmethod, predictorMatrix=pm,
            maxit=4, m=5, pls.impMethod="pmm5" )

#*** Model 1: Raw score difference
mod1 <- with( imp, stats::lm( read ~ migrant ) )
smod1 <- summary( mice::pool(mod1) )
  ##   > smod1
  ##                  est    se      t     df Pr(>|t|)  lo 95  hi 95 nmis    fmi lambda
  ##   (Intercept) 510.21 1.460 349.37 358.26        0 507.34 513.09   NA 0.1053 0.1004
  ##   migrant     -43.38 3.757 -11.55  62.78        0 -50.89 -35.87  404 0.2726 0.2498

#*** Model 2: ANCOVA - regression adjustment
mod2 <- with( imp, stats::lm( read ~ migrant + hisei + paredu + female + books) )
smod2 <- summary( mice::pool(mod2) )
  ##   > smod2
  ##                    est      se      t      df  Pr(>|t|)    lo 95   hi 95 nmis      fmi   lambda
  ##   (Intercept) 385.1506 4.12027 93.477 3778.66 0.000e+00 377.0725 393.229   NA 0.008678 0.008153
  ##   migrant     -29.1899 3.30263 -8.838   87.46 9.237e-14 -35.7537 -22.626  404 0.228363 0.210917
  ##   hisei         0.9401 0.08749 10.745  160.51 0.000e+00   0.7673   1.113  733 0.164478 0.154132
  ##   paredu        2.9305 0.79081  3.706   41.34 6.190e-04   1.3338   4.527  672 0.339961 0.308780
  ##   female       38.1719 2.26499 16.853 1531.31 0.000e+00  33.7291  42.615    0 0.041093 0.039841
  ##   books        14.0113 0.88953 15.751  154.71 0.000e+00  12.2541  15.768  423 0.167812 0.157123

#*** Model 3a: Estimation using counterfactuals
mod3a <- with( imp, stats::lm( I( read.migrant1 - read.migrant0) ~ 1 ) )
smod3a <- summary( mice::pool(mod3a) )
  ##   > smod3a
  ##                  est    se      t    df Pr(>|t|)  lo 95  hi 95 nmis    fmi lambda
  ##   (Intercept) -22.54 7.498 -3.007 4.315  0.03602 -42.77 -2.311   NA 0.9652 0.9521

#*** Model 3b: Like Model 3a but using student weights
mod3b <- with( imp, stats::lm( I( read.migrant1 - read.migrant0) ~ 1,
                        weights=data.ma01$studwgt ) )
smod3b <- summary( mice::pool(mod3b) )
  ##   > smod3b
  ##                  est    se      t  df Pr(>|t|)  lo 95  hi 95 nmis    fmi lambda
  ##   (Intercept) -21.88 7.605 -2.877 4.3  0.04142 -42.43 -1.336   NA 0.9662 0.9535

#*** Model 4: Average treatment effect on the treated (ATT, migrants)
#             and non-treated (ATN, non-migrants)
mod4 <- with( imp, stats::lm( I( read.migrant1 - read.migrant0) ~ 0 + as.factor( migrant) )   )
smod4 <- summary( mice::pool(mod4) )
  ##   > smod4
  ##                          est    se      t    df Pr(>|t|)  lo 95   hi 95 nmis    fmi lambda
  ##   as.factor(migrant)0 -23.13 8.664 -2.669  4.27 0.052182 -46.59  0.3416   NA 0.9682 0.9562
  ##   as.factor(migrant)1 -19.95 5.198 -3.837 19.57 0.001063 -30.81 -9.0884   NA 0.4988 0.4501
# ATN=-23.13 and ATT=-19.95
}

Run the code above in your browser using DataLab