Learn R Programming

miceadds (version 3.16-18)

micombine.F: Combination of F Statistics for Multiply Imputed Datasets Using a Chi Square Approximation

Description

Several \(F\) statistics from multiply imputed datasets are combined using an approximation based on \(\chi^2\) statistics (see micombine.chisquare).

Usage

micombine.F(Fvalues, df1, display=TRUE, version=1)

Value

The same output as in micombine.chisquare

Arguments

Fvalues

Vector containing \(F\) values.

df1

Degrees of freedom of the numerator. Degrees of freedom of the numerator are approximated by \(\infty\) (large number of degrees of freedom).

display

A logical indicating whether results should be displayed at the console

version

Integer indicating which calculation formula should be used. The default version=1 refers to the correct formula as in Enders (2010), while version=0 uses an incorrect formula as printed in Allison (2001). The incorrect calculation version=0 was included in miceadds versions smaller than version 2.0. See also http://statisticalhorizons.com/wp-content/uploads/2012/01/combchi.sas.

References

Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage.

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Grund, S., Luedtke, O., & Robitzsch, A. (2016). Pooling ANOVA results from multiply imputed datasets: A simulation study. Methodology, 12(3), 75-88. tools:::Rd_expr_doi("10.1027/1614-2241/a000111")

See Also

micombine.chisquare

Examples

Run this code
#############################################################################
# EXAMPLE 1: F statistics for 5 imputed datasets
#############################################################################

Fvalues <- c( 6.76, 4.54, 4.23, 5.45, 4.78 )
micombine.F(Fvalues, df1=4 )
  ##  Combination of Chi Square Statistics for Multiply Imputed Data
  ##  Using 5 Imputed Data Sets
  ##  F(4, 52.94)=3.946     p=0.00709

Run the code above in your browser using DataLab