Bartlett, J. W., Seaman, S. R., White, I. R., Carpenter, J. R., & Alzheimer's Disease
Neuroimaging Initiative (2015). Multiple imputation of covariates by fully
conditional specification: Accommodating the substantive model.
Statistical Methods in Medical Research, 24(4), 462-487.
tools:::Rd_expr_doi("10.1177/0962280214521348")
Grund, S., Luedtke, O., & Robitzsch, A. (2018). Multiple imputation of multilevel
data in organizational research. Organizational Research Methods, 21(1), 111-149.
tools:::Rd_expr_doi("10.1177/1094428117703686")
Mislevy, R. J. (1991). Randomization-based inference about latent variables
from complex samples. Psychometrika, 56(2), 177-196.
tools:::Rd_expr_doi("10.1007/BF02294457")
Nowok, B., Raab, G., & Dibben, C. (2016).
synthpop: Bespoke creation of synthetic data in R.
Journal of Statistical Software, 74(11), 1-26.
tools:::Rd_expr_doi("10.18637/jss.v074.i11")
Reiter, J. P. (2005) Releasing multiply-imputed, synthetic public use microdata:
An illustration and empirical study.
Journal of the Royal Statistical Society, Series A, 168(1), 185-205.
tools:::Rd_expr_doi("10.1111/j.1467-985X.2004.00343.x")
Robitzsch, A., Pham, G., & Yanagida, T. (2016). Fehlende Daten und Plausible Values.
In S. Breit & C. Schreiner (Hrsg.). Large-Scale Assessment mit R: Methodische
Grundlagen der oesterreichischen Bildungsstandardueberpruefung (S. 259-293). Wien: facultas.
Rubin, D. B. (2003). Nested multiple imputation of NMES via partially
incompatible MCMC. Statistica Neerlandica, 57(1), 3-18.
tools:::Rd_expr_doi("10.1111/1467-9574.00217")
van Buuren, S. (2018). Flexible imputation of missing data.
Boca Raton: CRC Press. tools:::Rd_expr_doi("10.1201/9780429492259")
van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice:
Multivariate imputation by chained equations in R.
Journal of Statistical Software, 45(3), 1-67.
tools:::Rd_expr_doi("10.18637/jss.v045.i03")