Learn R Programming

midasr (version 0.9)

amweights: Weights for aggregates based MIDAS regressions

Description

Produces weights for aggregates based MIDAS regression

Usage

amweights(p, d, m, weight = nealmon, type = c("A", "B", "C"))

Value

a vector of weights

Arguments

p

parameters for weight functions, see details.

d

number of high frequency lags

m

the frequency

weight

the weight function

type

type of structure, a string, one of A, B or C.

Author

Virmantas Kvedaras, Vaidotas Zemlys

Details

Suppose a weight function \(w(\beta,\theta)\) satisfies the following equation: $$w(\beta,\theta)=\beta g(\theta)$$

The following combinations are defined, corresponding to structure types A, B and C respectively: $$(w(\beta_1,\theta_1),...,w(\beta_k,\theta_k))$$ $$(w(\beta_1,\theta),...,w(\beta_k,\theta))$$ $$\beta(w(1,\theta),...,w(1,\theta)),$$

where \(k\) is the number of low frequency lags, i.e. \(d/m\). If the latter value is not whole number, the error is produced.

The starting values \(p\) should be supplied then as follows: $$(\beta_1,\theta_1,...,\beta_k,\theta_k)$$ $$(\beta_1,...,\beta_k,\theta)$$ $$(\beta,\theta)$$