##Take the same example as in midas_r
theta_h0 <- function(p, dk, ...) {
i <- (1:dk-1)/100
pol <- p[3]*i + p[4]*i^2
(p[1] + p[2]*i)*exp(pol)
}
##Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)
##Plot the coefficients
plot(theta0)
##Generate the predictor variable
xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)
##Simulate the response variable
y <- midas_sim(500, xx, theta0)
x <- window(xx, start=start(y))
##Fit quantile regression. All the coefficients except intercept should be constant.
##Intercept coefficient should correspond to quantile function of regression errors.
mr <- midas_qr(y~fmls(x,4*12-1,12,theta_h0), tau = c(0.1, 0.5, 0.9),
list(y=y,x=x),
start=list(x=c(-0.1,10,-10,-10)))
mr
Run the code above in your browser using DataLab